Culture and Human Agro-ecosystem Dynamics: the Tsembaga of New Guinea

Model Description

The model of Tsembaga agro-ecology explores the coupled dynamics involving population growth, renewable resource base, resource consumption by humans, and the self-regulating effect of cultural ritual. The model demonstrates that the cultural ritual of Tsembaga (Kaiko) can stabilize the Tsembaga population and its resource level. This is achieved by attenuating wildly fluctuating limit cycles of population and resource levels down to desirable small-amplitude cycles. Anderies (1998) describes the model as the following.

"In his classic work,Pigs for the Ancestors, Roy Rappaport proposed that the ritual cycle of the Tsembaga was a mechanism to regulate human population growth and prevent the degradation of the Tsembaga ecosystem. Rappaport provided detailed ethnographic and ecological information to support his claim, but many aspects of Rappaport's model were subsequently criticised. Several simulation models of the Tsembaga ecosystem were constructed to test Rappaport's hypothesis (Shantzis & Behrens, 1973; Foin & Davis, 1984) and evaluate possible alternatives (e.g. Foin & Davis, 1987). The basic conclusions were that it was possible to develop models supporting Rappaport's hypothesis but they were extremely sensitive to parameter choices, and other simpler population control mechanisms might be more likely (Buchbinder, 1977; Foin & Davis, 1987).


In this paper, a much simpler dynamical system model for a slash-and-burn agricultural system is developed and applied to the Tsembaga system. By analysing the structure of the model for different physical and socioeconomic conditions, sources of instability and possible stabilising mechanisms are identified. The model indicates that behavioral plasticity (ability to modify behavior over a wide range of behavioral options, quickly and easily) is a fundamental source of instability which is strong enough to nullify more direct stabilising influences such as malnutrition and disease. This suggests that the only possible mechanism to counter to this fundamentally destabilising force may be cultural, i.e. the ritual cycle. Finally, a condition is outlined for which the ritual cycle will produce (local) stability".

You can adjust total time of simulation below.
This model has three state variables. You can set their initial values below.
This model has 18 parameters. You can set their values below.
Enter the axes to be plotted for this model.